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AbstractÐThe Facial Action Coding System (FACS) [23] is an objective method for quantifying facial movement in terms of

component actions. This system is widely used in behavioral investigations of emotion, cognitive processes, and social interaction. The

coding is presently performed by highly trained human experts. This paper explores and compares techniques for automatically

recognizing facial actions in sequences of images. These techniques include analysis of facial motion through estimation of optical

flow; holistic spatial analysis, such as principal component analysis, independent component analysis, local feature analysis, and linear

discriminant analysis; and methods based on the outputs of local filters, such as Gabor wavelet representations and local principal

components. Performance of these systems is compared to naive and expert human subjects. Best performances were obtained using

the Gabor wavelet representation and the independent component representation, both of which achieved 96 percent accuracy for

classifying 12 facial actions of the upper and lower face. The results provide converging evidence for the importance of using local

filters, high spatial frequencies, and statistical independence for classifying facial actions.

Index TermsÐComputer vision, facial expression recognition, independent component analysis, principal component analysis, Gabor

wavelets, Facial Action Coding System.
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1 INTRODUCTION

FACIAL expressions provide information not only about
affective state, but also about cognitive activity, tem-

perament and personality, truthfulness, and psychopathol-
ogy. The Facial Action Coding System (FACS) [23] is the
leading method for measuring facial movement in beha-
vioral science. FACS is currently performed manually by
highly trained human experts. Recent advances in image
analysis open up the possibility of automatic measurement
of facial signals. An automated system would make facial
expression measurement more widely accessible as a tool
for research and assessment in behavioral science and
medicine. Such a system would also have applications in
human-computer interaction.

This paper presents a survey and comparison of recent

techniques for facial expression recognition as applied to

automated FACS encoding. Recent approaches include

measurement of facial motion through optic flow [44],

[64], [54], [26], [15], [43] and analysis of surface textures

based on principal component analysis (PCA) [17], [48],

[40]. In addition, a number of methods that have been

developed for representing faces for identity recognition

may also be powerful for expression analysis. These
approaches are also included in the present comparison.
These include Gabor wavelets [20], [39], linear discriminant
analysis [8], local feature analysis [49], and independent
component analysis [5], [4]. The techniques are compared
on a single image testbed. The analysis focuses on methods
for face image representation (generation of feature vectors)
and the representations are compared using a common
similarity measure and classifier.

1.1 The Facial Action Coding System

FACS was developed by Ekman and Friesen [23] in 1978 to
objectively measure facial activity for behavioral science
investigations of the face. It provides an objective descrip-
tion of facial signals in terms of component motions, or
ªfacial actions.º FACS was developed by determining from
palpation, knowledge of anatomy, and videotapes how the
contraction of each of the facial muscles changed the
appearance of the face (see Fig. 1). Ekman and Friesen
defined 46 Action Units, or AUs, to correspond to each
independent motion of the face. A trained human FACS
coder decomposes an observed expression into the specific
AUs that produced the expression. FACS is coded from
video and the code provides precise specification of the
dynamics (duration, onset, and offset time) of facial move-
ment in addition to the morphology (the specific facial
actions which occur).

FACS continues to be the leading method for measuring
facial expressions in behavioral science (see [25] for a
review). This system has been used, for example, to
demonstrate differences between genuine and simulated
pain [19], differences between when people are telling the
truth versus lying [22], and differences between the facial
signals of suicidal and nonsuicidally depressed patients
[34]. Although FACS is a promising approach, a major
impediment to its widespread use is the time required to
both train human experts and to manually score the video
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tape. It takes over 100 hours of training to achieve minimal
competency on FACS and each minute of video tape takes
approximately one hour to score. Automating FACS would
make it more widely accessible as a research tool. It would
not only increase the speed of coding, it would also improve
the reliability, precision, and temporal resolution of facial
measurement.

Aspects of FACS have been incorporated into computer
graphic systems for synthesizing facial expressions (e.g.,
Toy Story [38]) and into facial muscle models for para-
meterizing facial movement [55], [44]. It is important to
distinguish FACS itself from facial muscle models that
employ aspects of FACS. In particular, there has been a
tendency to confuse FACS with CANDIDE [55]. FACS is
performed by human observers using stop-motion video.
Although there are clearly defined relationships between
FACS and the underlying facial muscles, FACS is an image-
based method. Facial actions are defined by the image
changes they produce in video sequences of face images.

1.2 Automated Facial Expression Measurement

Recent advances have been made in computer vision for
automatic recognition of facial expressions in images. The
approaches that have been explored include analysis of
facial motion [44], [64], [54], [26], measurements of the
shapes of facial features and their spatial arrangements [40],
[66], holistic spatial pattern analysis using techniques based
on principal component analysis [17], [48], [40], graylevel
pattern analysis using local spatial filters [48], [66], and
methods for relating face images to physical models of the
facial skin and musculature [44] [59], [42], [26]. The image
analysis techniques in these systems are relevant to the
present goals, but the systems themselves are of limited use
for behavioral science investigations of the face (see [31] for
a discussion). Many of these systems were designed with an
objective of classifying facial expressions into a few basic
categories of emotion, such as happy, sad, or surprised. For
basic science investigations of facial behavior itself, such as
studying the difference between genuine and simulated
pain, an objective and detailed measure of facial activity
such as FACS is needed. Several computer vision systems
explicitly parameterize facial movement [64] and relate
facial movements to the underlying facial musculature [44],
[26], but it is not known whether these descriptions are
sufficient for describing the full range of facial behavior. For
example, movement parameters that were estimated from
posed, prototypical expressions may not be appropriate
descriptors for spontaneous facial expressions, which differ
from posed expressions in both their morphology and their
dynamics [31]. Furthermore, the relationship between these
movement parameters and internal state has not been
investigated to the extent that FACS has been. There is over
20 years of behavioral data on the relationships of facial
action codes to emotion and to state variables such as deceit,
interest, depression, and psychopathology.

In addition to providing a tool for basic science research,
a system that outputs facial action codes would provide a
strong basis for human-computer interaction systems. In
natural interaction, prototypic expressions of basic emo-
tions occur relatively infrequently. Annoyance, for example,
may be indicated by just a lowering of the brows or

tightening of the mouth. FACS provides a description of the
basic elements of any facial movement, analogous to
phonemes in speech. Facial action codes also provide more
detailed information about facial behavior, including in-
formation about variations within an emotional category
(e.g., vengeance vs. resentment), variations in intensity (e.g.,
annoyance vs. fury), blends of two or more emotions (e.g.,
happiness + disgust! smug), facial signals of deceit, signs
of boredom or interest, and conversational signals that
provide emphasis to speech and information about syntax.

Explicit attempts to automate the facial action coding
system involved tracking the positions of dots attached to
the face [35], [37]. A system that detects facial actions from
image sequences without requiring application of dots to
the subjects face would have much broader utility. Efforts
have recently turned to measuring facial actions by image
processing of video sequences [6], [4], [15]. Cohn et al. [15]
achieved some success for automated facial action coding
by feature point tracking of a set of manually located points
in the face image (fiducial points). Here, we explore image
representations based on full field analysis of the face
image, not just displacements of selected feature points.
Techniques employing 2D filters of image graylevels have
proven to be more effective than feature-based representa-
tions for identity recognition [13], [40] and expression
recognition [66]. In our previous work on automatic facial
action coding [6], [3], [2], we found that full-field
representations of image textures and image motion
provided more reliable indicators of facial actions than
task-specific feature measurements such as the increase of
facial wrinkles in specific facial regions.

Several facial expression recognition systems have
employed explicit physical models of the face [44], [59],
[42], [26]. There are numerous factors that influence the
motion of the skin following muscle contraction, and it is
difficult to accurately account for all of them in a
deterministic model. Here, we take an image-based
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Fig. 1. The Facial Action Coding System decomposes facial motion into
component actions. The upper facial muscles corresponding to action
units 1, 2, 4, 6, and 7 are illustrated. Reprinted with permission from
Ekman and Friesen (1978).



approach in which facial action classes are learned directly
from example image sequences of the actions, bypassing the
physical model. Image-based approaches have recently
been advocated [11] and can successfully accomplish tasks
previously assumed to require mapping onto a physical
model, such as expression synthesis, face recognition across
changes in pose, and synthesis across pose [12], [61].

2 OVERVIEW

This paper explores and compares approaches to face image
representation. Section 3 presents the image database used
for the comparative study and the image preprocessing
techniques. We examined a number of techniques that have
been presented in the literature for processing images of
faces and compare their performance on the task of facial
action classification. These approaches were grouped into
the following classes: analysis of facial motion, holistic
spatial analysis, and local spatial analysis. Section 4
examines a representation of facial motion based on optic
flow. The technique is a correlation-based method with
subpixel accuracy [58]. Because local smoothing is com-
monly imposed on flow fields to clean up the signal, we
also examined the effects of local smoothing on classifica-
tion of facial motion. Holistic spatial analysis is an approach
that employs image-dimensional graylevel texture filters.
Many of these approaches employ data-driven kernels
learned from the statistics of the face image ensemble. These
approaches include eigenfaces [60], [17], [48], [40] and local
feature analysis (LFA) [49], in which the kernels are learned
through unsupervised methods based on principal compo-
nent analysis (PCA). Eigenface and LFA kernels are derived
from the second-order dependencies among the image
pixels, whereas independent component analysis (ICA)
learns kernels from the high-order dependencies in addi-
tion to the second-order dependencies among the pixels [5],
[4], [2]. Another class of holistic kernel, Fisher's linear
discriminants (FLD) [8], is learned through supervised
methods, and finds a class-specific linear projection of the
images. Section 5 compares four representations derived
from holistic spatial analysis: eigenfaces (PCA), LFA, ICA,
and FLD. Local spatial analysis is an approach in which
spatially local kernels are employed to filter the images.
These include predefined families of kernels, such as Gabor
wavelets [20], [39], [66], and data-driven kernels learned
from the statistics of small image patches, such as local PCA
[48]. Section 6 examines two representations based on the
outputs of local spatial filters: local PCA and a Gabor
wavelet representation. The two local representations were
further compared via a hybrid representation, local PCA
jets. Section 7 provides benchmarks for the performance of
the computer vision systems by measuring the ability of
naive and expert human subjects to classify the facial
actions.

3 IMAGE DATABASE

We collected a database of image sequences of subjects
performing specified facial actions. The full database
contains over 1,100 sequences containing over 150 distinct
actions, or action combinations, and 24 different subjects.

Each sequence contained six images, beginning with a
neutral expression and ending with a high magnitude
muscle contraction. Trained FACS experts provided de-
monstrations and instructions to subjects on how to
perform each action. The selection of images was based
on FACS coding of stop motion video. The images were
coded by three experienced FACS coders certified with high
intercoder reliability. The criterion for acceptance of images
was that the requested action and only the requested action
was present. Sequences containing rigid head motion
detectable by a human observer were excluded. For this
investigation, we used data from 20 subjects and attempted
to classify 12 actions: six upper face actions and six lower
face actions. See Fig. 2 for a summary of the actions
examined. There were a total of 111 action sequences, (9, 10,
18, 20, 5, 18), respectively, of the six upper face actions, and
(8, 4, 4, 5, 4, 6) of the six lower face actions. The actions were
divided into upper and lower-face categories because facial
actions in the lower face have little influence on facial
motion in the upper face and vice versa [23], which allowed
us to treat them separately.

The face was located in the first frame in each sequence
using the centers of the eyes and mouth. These coordinates
were obtained manually by a mouse click. Accurate image
registration is critical to holistic approaches such as
principal component analysis. An alignment procedure
similar to this one was found to give the most accurate
image registration during the FERET test [50]. The variance
in the assigned feature location using this procedure was
0.4 pixels in the 640� 480 pixel images. The coordinates
from Frame 1 were used to register the subsequent frames
in the sequence. We found in pilot investigations that rigid
head motion was smaller than the positional noise in the
registration procedure. The three coordinates were used to
align the faces, rotate the eyes to horizontal, scale, and,
finally, crop a window of 60� 90 pixels containing the
region of interest (upper or lower face). The aspect ratios of
the faces were warped so that the eye and mouth centers
coincided across all images. It has been found that identity
recognition performance using principal component-based
approaches is most successful when the images are warped
to remove variations in facial shape [11], [62].

To control the variation in lighting between frames of the
same sequence and in different sequences, we applied a
logistic filter with parameters chosen to match the statistics
of the grayscale levels of each sequence [46]. This procedure
enhanced the contrast, performing a partial histogram
equalization on the images.

4 OPTIC FLOW ANALYSIS

The majority of work on facial expression recognition has
focused on facial motion analysis through optic flow
estimation. In an early exploration of facial expression
recognition, Mase [44] used optic flow to estimate the
activity in a subset of the facial muscles. Essa and Pentland
[26] extended this approach, using optic flow to estimate
activity in a detailed anatomical and physical model of the
face. Motion estimates from optic flow were refined by the
physical model in a recursive estimation and control
framework and the estimated forces were used to classify
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the facial expressions. Yacoob and Davis [64] bypassed the
physical model and constructed a mid-level representation
of facial motion, such as ªright mouth corner raises,º
directly from the optic flow. These mid-level representa-
tions were classified into one of six facial expressions using
a set of heuristic rules. Rosenblum et al. [54] expanded this
system to model the full temporal profile of facial
expressions with radial basis functions, from initiation, to
apex, and relaxation. Cohn et al. [15] are developing a
system for automatic facial action classification based on
feature-point tracking. The displacements of 36 manually
located feature points are estimated using optic flow and
classified using discriminant functions.

Here, optic flow fields were estimated by employing a
correlation-based technique developed by Singh [58]. This
algorithm produces flow fields with subpixel accuracy and
is comprised of two main components: 1) local velocity
extraction using luminance conservation constraints, 2)
local smoothing.

4.1 Local Velocity Extraction

We start with a sequence of three images at time t �
t0 ÿ 1; t0; t0 � 1 and use it to recover all the velocity
information available locally. For each pixel P�x; y� in the
central image (t � t0), 1) a small window �Wp� of 3� 3
pixels is formed around P, 2) a search area �Ws� of 5� 5

pixels is considered around location (x; y) in the other two

images, 3) the correlation between �Wp� and the corre-

sponding window centered on each pixel in �Ws� is

computed, thus giving the matching strength, or response,

at each pixel in the search window �Ws�.
At the end of this process, �Ws� is covered by a response

distribution �R� in which the response at each point gives

the frequency of occurrence, or likelihood, of the corre-

sponding value of velocity. Employing a constant temporal

model, the response distributions for the two windows

corresponding to t0 ÿ 1 and t0 � 1, (Rÿ1 and R�1), are

combined by R � R�1 � �Rÿ1. Velocity is then estimated

using the weighted least squares estimate in (1). Fig. 3

shows an example flow field obtained by this algorithm.

û �
P

u

P
vR�u; v�uP

u

P
vR�u; v�

v̂ �
P

u

P
vR�u; v�vP

u

P
vR�u; v�

u; v 2 �ÿ2; 2�:

�1�

4.2 Local Smoothing

To refine the conservation constraint estimate Ucc � �û; v̂�
obtained above, a local neighborhood estimate of velocity,

U, is defined as a weighted sum of the velocities in a

neighborhood of P using a 5� 5 Gaussian mask. An
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Fig. 2. List of facial actions classified in this study. From left to right: Example cropped image of the highest magnitude action, the � image obtained

by subtracting the neutral frame (the first image in the sequence), Action Unit number, and Action Unit name.



optimal estimate U of (u; v) should combine the two

estimates Ucc and U, from the conservation and local

smoothness constraints respectively. Since U is a point in

�u; v� space, its distance from U, weighted by its covariance

matrix S, represents the error in the smoothness constraint

estimate. Similarly, the distance between U and Ucc
weighted by Scc represents the error due to conservation

constraints. Computing U , then, amounts to simultaneously

minimizing the two errors:

U � arg minfkU ÿ UcckScc
^

kU ÿ UkSg: �2�
Since we do not know the true velocity, this estimate must

be computed iteratively. To update the field, we use the

equations [58]:

U0 � Ucc
Uk�1 � Sÿ1

cc � S
ÿ1

h iÿ1
Sÿ1
cc Ucc � S

ÿ1Uk
h i

;
�3�

where Uk is the estimate derived from smoothness

constraints at step k. The iterations stop when

kUk�1 ÿ Ukk < ";

with " / 10ÿ4.

4.3 Classification Procedure

The following classification procedures were used to test

the efficacy of each representation in this comparison for

facial action recognition. Each image analysis algorithm

produced a feature vector, f . We employed a simple nearest

neighbor classifier in which the similarity S of a training

feature vector, ft, and a novel feature vector, fn, was

measured as the cosine of the angle between them:

S�fn; ft� � hfn; fti
kfnk � kftk 2 �ÿ1; 1�: �4�

Classification performances were also evaluated using
Euclidean distance, instead of cosine, as the similarity
measure and template matching, instead of nearest neigh-
bor as the classifier, where the templates consisted of the
mean feature vector for the training images. The similarity
measure and classifier that gave the best performance is
indicated for each technique.

The algorithms were trained and tested using leave-one-
out cross-validation, also known as the jack-knife proce-
dure, which makes maximal use of the available data for
training. In this procedure, the image representations were
calculated multiple times, each time using images from all
but one subject for training and reserving one subject for
testing. This procedure was repeated for each of the
20 subjects and mean classification accuracy was calculated
across all of the test cases.

Table 1 presents classification performances for the
medium magnitude facial actions, which occur in the
middle of each sequence. Performance was consistently
highest for the medium magnitude actions. Flow fields
were calculated from frames 2, 3, and 4 of the image
sequence and the performance of the brightness-based
algorithms is presented for frame 4 of each sequence. A
class assignment is considered ªcorrectº if it is consistent
with the labels assigned by human experts during image
collection. The consistency of human experts with each
other on this image set is indicated by the agreement rates
also shown in Table 1.

4.4 Optic Flow Performance

Best performance for the optic flow approach was obtained
using the the cosine similarity measure and template
matching classifier. The correlation-based flow algorithm
gave 85.6 percent correct classification performance. Since
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Fig. 3. Optic flow for AU1 extracted using local velocity information extracted by the correlation-based technique, with no spatial smoothing.



optic flow is a noisy measure, many flow-based expression

analysis systems employ regularization procedures such as

smoothing and quantizing. We found that spatial smooth-

ing did not improve performance and, instead, degraded it

to 53.1 percent. It appears that high spatial resolution optic

flow is important for facial action classification. In addition,

the motion in facial expression sequences is nonrigid and

can be highly discontinuous due to the formation of

wrinkles. Smoothing algorithms that are not sensitive to

these boundaries can be disadvantageous.
There are a variety of choices of flow algorithms, of

which Singh's correlation-based algorithm is just one. Also,

it is possible that adding more data to the flow field

estimate could improve performance. The results obtained

here, however, were comparable to the performance of

other facial expression recognition systems based on optic

flow [64], [54]. Optic flow estimates can also be further

refined, such as with a Kalman filter in an estimation-and-

control framework (e.g., [26]). The comparison here

addresses direct, image-based representations that do not

incorporate a physical model. Sequences of flow fields can

also be analyzed using dynamical models, such as an

HMMs or radial basis functions (e.g., [54]). Such dynamical

models could also be employed with texture-based repre-

sentations. Here, we compare all representations using the
same classifiers.

5 HOLISTIC ANALYSIS

A number of approaches to face image analysis employ
data-driven kernels learned from the statistics of the face
image ensemble. Approaches such as eigenfaces [60]
employ principal component analysis, which is an unsu-
pervised learning method based on the second-order
dependencies among the pixels. Second-order dependen-
cies are pixelwise covariances. Representations based on
principal component analysis have been applied success-
fully to recognizing facial identity [18], [60], classifying
gender [17], [29], and recognizing facial expressions [17],
[48], [6].

Penev and Atick [49] recently developed a topographic
representation based on second-order image dependencies
called local feature analysis (LFA). A representation based
on LFA gave the highest performance on the March 1995
FERET face recognition competition [51]. The LFA kernels
are spatially local, but, in this paper, we class this technique
as holistic since the image-dimensional kernels are derived
from statistical analysis over the whole image. Another
holistic image representation that has recently been shown
to be effective for identity recognition is based on Fisher's
Linear discriminants (FLD) [8]. FLD is a supervised learning
method that uses second-order statistics to find a class-
specific linear projection of the images. Representations
such as PCA (eigenfaces), LFA, and FLD do not address
high-order statistical dependencies in the image. A repre-
sentation based on independent component analysis (ICA)
was recently developed which is based on the high-order, in
addition to the second-order dependencies in the images
[5], [4], [2]. The ICA representation was found to be
superior to the eigenface (PCA) representation for classify-
ing facial identity.

The holistic spatial analysis algorithms examined in this
section each found a set of n-dimensional data-driven
image kernels, where n is the number of pixels in each
image. The analysis was performed on the difference (or �)
images (Fig. 2), obtained by subtracting the first image in a
sequence (neutral frame) from each of the subsequent
frames in each sequence. Advantages of difference images
include robustness to changes in illumination, removal of
surface variations between subjects, and emphasis of the
dynamic aspects of the image sequence [46]. The kernels
were derived from low, medium, and high magnitude
actions. Holistic kernels for the upper and lower-face
subimages were calculated separately.

The methods in this section begin with a data matrix X
where the �-images were stored as row vectors xj, and the
columns had zero mean. In the following descriptions, n is
the number of pixels in each image, N is the number of
training images and p is the number of principal compo-
nents retained to build the final representation.

5.1 Principal Component Analysis: ªEigenActionsº

This approach is based on [17] and [60], with the primary
distinction in that we performed principal component
analysis on the dataset of difference images. The principal
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TABLE 1
Best Performance for Each Classifier

PCA: Principal component analysis. LFA: Local feature analysis. FLD:
Fisher's linear discriminant. ICA: Independent component analysis.
Shift-inv: Shift-invariant. Shift-var: Shift-variant.



components were obtained by calculating the eigenvectors
of the pixelwise covariance matrix, S, of the �-images, X.
The eigenvectors were found by decomposing S into the
orthogonal matrix P and diagonal matrix D: S � PDPT .
Examples of the eigenvectors are shown in Fig. 4. The zero-
mean �-frames of each sequence were then projected onto
the first p eigenvectors in P , producing a vector of p
coefficients for each image.

Best performance with the holistic principal component
representation, 79.3 percent correct, was obtained with the
first 30 principal components, using the Euclidean distance
similarity measure and template matching classifier. Pre-
vious studies (e.g., [8]) reported that discarding the first one
to three components improved performance. Here, discard-
ing these components degraded performance.

5.2 Local Feature Analysis (LFA)

Local Feature Analysis (LFA) defines a set of topographic,
local kernels that are optimally matched to the second-order
statistics of the input ensemble [49]. The kernels are derived
from the principal component axes and consist of ºspher-
ingº the PCA coefficients to equalize their variance [1],
followed by a rotation to pixel space. We begin with the
zero-mean matrix of �-images, X, and calculate the
principal component eigenvectors P according to
S � PDPT . Penev and Atick [49] defined a set of kernels,
K as

K � PV PT where V � Dÿ1
2 � diag

1�����
�i
p
� �

i � 1; . . . ; p;

�5�
where �i are the eigenvalues of S. The rows of K contain the
kernels. The kernels were found to have spatially local
properties and are ªtopographicº in the sense that they are
indexed by spatial location [49]. The kernel matrix K
transforms X to the LFA output O � KXT (see Fig. 5). Note
that the matrix V is the inverse square root of the covariance
matrix of the principal component coefficients. This trans-
form spheres the principal component coefficients (nor-
malizes their output variance to unity) and minimizes
correlations in the LFA output. Another way to interpret the
LFA output O is that it is the image reconstruction using
sphered PCA coefficients, O � P �V PTXT �.

5.2.1 Sparsification of LFA

LFA produces an n-dimensional representation, where n is
the number of pixels in the images. Since we have n outputs
described by p << n linearly independent variables, there
are residual correlations in the output. Penev and Atick
presented an algorithm for reducing the dimensionality of
the representation by choosing a subset M of outputs that
were as decorrelated as possible. The sparsification algo-
rithm was an iterative algorithm based on multiple linear
regression. At each time step, the output point that was
predicted most poorly by multiple linear regression on the
points in M was added to M. Due to the topographic
property of the kernels, selection of output points was
equivalent to selection of kernels for the representation.

The methods in [49] addressed image representation but
did not address recognition. The sparsification algorithm in

[49] selected a different set of kernels, M, for each image,
which is problematic for recognition. In order to make the
representation amenable to recognition, we selected a single
setM of kernels for all images. At each time step, the kernel
corresponding to the pixel with the largest mean recon-
struction error across all images was added to M.

At each step, the kernel added to M is chosen as the
kernel corresponding to location

arg maxhkOÿOreck2i; �6�
where Orec is a reconstruction of the complete output, O,
using a linear predictor on the subset of the outputs O
generated from the kernels inM. The linear predictor is of
the form:

Y � �X ; �7�
where Y � Orec, � is the vector of the regression parameters,
and X � O�M; N�. Here, O�M; N� denotes the subset of O
corresponding to the points in M for all N images.1

� is calculated from:

� � YX
�XTX� �

�Orec�TO�M;N�
O�M;N�T O�M;N� : �8�

Equation (8) can also be expressed in terms of the
correlation matrix of the outputs, C � OTO, as in [49]:

� � C�M; N�C�M;M�ÿ1: �9�
The termination condition was jMj � N . Fig. 5 shows the
locations of the points selected by the sparsification
algorithm for the upper-face images. We evaluated classi-
fication performance using the first i kernels selected by the
sparsification algorithm, up to N � 155.

The local feature analysis representation attained
81.1 percent correct classification performance. Best perfor-
mance was obtained using the first 155 kernels, the cosine
similarity measure, and nearest neighbor classifier. Classi-
fication performance using LFA was not significantly
different from the performance using global PCA. Although
a face recognition algorithm related to LFA outperformed
eigenfaces in the March 1995 FERET competition [51], our
results suggest that an aspect of the algorithm other than
the LFA representation accounts for the difference in
performance. The exact algorithm used in the FERET test
has not been disclosed.

5.3 ªFisherActionsº

This approach is based on the original work by Belhumeur
et al. [8] that showed that a class-specific linear projection of
a principal components representation of faces improved
identity recognition performance. The method is based on
Fisher's linear discriminant (FLD) [28], which projects the
images into a subspace in which the classes are maximally
separated. FLD assumes linear separability of the classes.
For identity recognition, the approach relied on the
assumption that images of the same face under different
viewing conditions lie in an approximately linear subspace
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of the image space, an assumption which holds true for

changes in lighting if the face is modeled by a Lambertian

surface [56], [32]. In our dataset, the lighting conditions are

fairly constant and most of the variation is suppressed by

the logistic filter. The linear assumption for facial expres-

sion classification is that the �-images of a facial action

across different faces lie in a linear subspace.

Fisher's Linear Discriminant is a projection into a

subspace that maximizes the between-class scatter while

minimizing the within-class scatter of the projected data.

Let �� �� f�1; �2; . . . ; �cg� be the set of all N � j�j data,

divided into c classes. Each class �i is composed of a

variable number of images xi 2 Rn. The between-class

scatter matrixSB and the inter-class scatter matrix SW are

defined as

SB ��
Xc
i�1

j�ij��i ÿ ����i ÿ ��T and

SW ��
Xc
i�1

X
xk2�i
�xk ÿ �i��xk ÿ �i�T ;

�10�

where �i is the mean image of class �i and � is the mean of

all data. Wopt projects �Rn 7!Rcÿ1� and satisfies

Wopt � arg max
W

J�W � �� arg max
W

det�WTSBW�
det�WTSWW �

� fw1; w2; . . . ; wcÿ1g: �11�

The fwig are the solutions to the generalized eigenvalues

problem SBwi � �iSWwi for i � 1; . . . ; cÿ 1. Following

[8], the calculations are greatly simplified by first perform-

ing PCA on the total scatter matrix �ST � SW � SB� to

project the feature space to Rp. Denoting the PCA projection

matrix Wpca, we project SW and SB:

~SB �� WT
pcaSBWpca and ~SW �� WT

pcaSWWpca: �12�
The original FLD problem is thus reformulated as:

Wfld � arg max
W

J�W� �� arg max
W

det�WT ~SBW�
det�WT ~SWW �

� fw01; w02; . . . ; w0cÿ1g: �13�

From (11) and (13), Wopt �WpcaWfld, and the fw0ig can now

be calculated using ~Sÿ1
W

~SBw
0
i � �iw0i, where ~SW is full-rank

for p � N ÿ c.
Best performance was obtained by choosing p � 30

principal components to first reduce the dimensionality of

the data. The data was then projected down to five

dimensions via the projection matrix, Wfld. Best perfor-

mance of 75.7 percent correct was obtained with the

Euclidean distance similarity measure and template match-

ing classifier.
Clustering with FLD is compared to PCA in Fig. 6. As an

example, three lower face actions were projected down to

cÿ 1 � 2 dimensions using FLD and PCA. The FLD

projection virtually eliminated within-class scatter of the

training set and the exemplars of each class were projected
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Fig. 4. First four principal components of the difference images for the (a) upper face actions and (b) lower face actions. Components are ordered

left to right, top to bottom.

Fig. 5. (a) An original �-image, (b) its corresponding LFA output O�x�, and (c) the first 155 filter locations selected by the sparsification algorithm

superimposed on the mean upper face �-image.



to a single point. The three actions in this example were 17,
18, and 9 + 25.

Contrary to the results obtained in [8], Fisher's Linear
Discriminants did not improve classification over basic
PCA (eigenfaces), despite providing a much more compact
representation of the data that optimized linear discrimina-
tion. This suggests that the linear subspace assumption was
violated more catastrophically for our dataset than for the
dataset in [8] which consisted of faces under different
lighting conditions. Another reason for the difference in
performance may be due to the problem of generalization to
novel subjects. The FLD method achieved the best perfor-
mance on the training data (close to 100 percent), but
generalized poorly to new individuals. This is consistent
with other reports of poor generalization to novel subjects
[14] (also H. Wechsler, personal communication). Good
performance with FLD has only been obtained when other
images of the test subject were included in the training set.
The low dimensionality may provide insufficient degrees of
freedom for linear discrimination between classes of face
images [14]. Class discriminations that are approximately

linear in high dimensions may not be linear when projected

down to as few as five dimensions.

5.4 Independent Component Analysis

Representations such as eigenfaces, LFA, and FLD are

based on the second-order dependencies of the image set,

the pixelwise covariances, but are insensitive to the high-

order dependencies of the image set. High-order depen-

dencies in an image include nonlinear relationships among

the pixel grayvalues, such as edges, in which there is phase

alignment across multiple spatial scales, and elements of

shape and curvature. In a task such as facial expression

analysis, much of the relevant information may be

contained in the high-order relationships among the image

pixels. Independent component analysis (ICA) is a general-

ization of PCA which learns the high-order moments of the

data in addition to the second-order moments. In a direct

comparison, a face representation based on ICA out-

performed PCA for identity recognition. The methods in

this section are based on [5], [4], [2].
The independent component representation was ob-

tained by performing ªblind separationº on the set of face

images [5], [4], [2]. In the image synthesis model of Fig. 7,

the �-images in the rows of X are assumed to be a linear

mixture of an unknown set of statistically independent

source images S, where A is an unknown mixing matrix.

The sources are recovered by a learned unmixing matrix W ,

which approximates Aÿ1 and produces statistically inde-

pendent outputs, U .
The ICA unmixing matrix W was found using an

unsupervised learning algorithm derived from the principle

of optimal information transfer between neurons [9], [10].

The algorithm maximizes the mutual information between

the input and the output of a nonlinear transfer function g.

A discussion of how information maximization leads to

independent outputs can be found in [47], [9], [10]. Let

u �Wx, where x is a column of the image matrix X and

y � g�u�. The update rule for the weight matrix, W , is given

by
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Fig. 6. PCA and FLD projections of three lower-face action classes onto

two dimensions. FLD projections are slightly offset for visibility. FLD

projected each class to a single point.

Fig. 7. Image synthesis model for the ICA representation.



�W � �I � y0uT �W
where y0 � @

@yi

@yi
@ui
� @

@ui
ln
@yi
@ui

:
�14�

We employed the logistic transfer function, g�u� � 1
1�eÿu ,

giving y0 � �1ÿ 2yi�. Convergence is greatly speeded by

including a ªspheringº step prior to learning [10], in which

the zero-mean dataset X is passed through the whitening

filter, WZ � 2 � hXXT iÿ1
2. This removes both the first and

the second-order dependencies from the data. The full

transform was, therefore, W �WI �WZ , where WI is the

weight obtained by information maximization in (14).
The projection of the image set onto each weight vector

in W produced an image of the statistical dependencies that

each weight vector learned. These images are the rows of

the output matrix U and examples are shown in Fig. 8. The

rows of U are the independent components of the image set

and they provided a basis set for the expression images. The

ICA representation consisted of the coefficients, a, for the

linear combination of basis images in U that comprised each

face image in X. These coefficients were obtained from the

rows of the estimated mixing matrix A �� Wÿ1 [4]. The

number of independent components extracted by the ICA

algorithm corresponds with the dimensionality of the input.

Two hundred independent components were extracted for

the upper and lower face image sets, respectively. Since

there were more than 200 images, ICA was performed on

200 linear mixtures of the faces without affecting the image

synthesis model. The first 200 PCA eigenvectors were

chosen for these linear mixtures since they give the

combination of the images that accouts for the maximum

variability among the pixels. The eigenvectors were normal-

ized to unit length. Details are available in [24
Unlike PCA, there is no inherent ordering to the

independent components of the dataset. We therefore

selected as an ordering parameter the class discriminability

of each component. Let ak be the overall mean of coefficient

ak and ajk be the mean for action j. The ratio of between-

class to within-class variability, r, for each coefficient is

defined as

r � �between
�within

; �15�

where �between �
P

j�ajk ÿ ak�2 is the variance of the j class

means and �within �
P

j

P
i�aijk ÿ ajk�2 is the sum of the

variances within each class. The first p components selected

by class discriminability comprised the independent com-

ponent representation.
Best performance of 95.5 percent was obtained with

the first 75 components selected by class discriminability,
using the cosine similarity measure and nearest neighbor
classifier. Independent component analysis gave the best
performance among all of the holistic classifiers. Note,
however, that the independent component images in Fig. 8
were local in nature. As in LFA, the ICA algorithm
analyzed the images as whole, but the basis images that
the algorithm learned were local. Two factors contributed
to the local property of the ICA basis images: Most of the
statistical dependencies were in spatially proximal image
locations and, second, the ICA algorithm produces sparse
outputs [10].

6 LOCAL REPRESENTATIONS

In the approaches described in Section 5, the kernels for the
representation were learned from the statistics of the entire
image. There is evidence from a number of sources that
local spatial filters may be superior to global spatial filters
for facial expression classification. Padgett and Cottrell [48]
found that ªeigenfeatures,º consisting of the principal
components of image subregions containing the mouth
and eyes, were more effective than global PCA (full-face
eigenfaces) for facial expression recognition. Furthermore,
they found that a set of shift-invariant local basis functions
derived from the principal components of small image
patches were more effective than both eigenfeatures and
global PCA. This finding is supported by Gray et al. [30],
who found that a similar local PCA representation gave
better performance than global PCA for lipreading from
video. Principal component analysis of image patches
sampled from random locations such that the image
statistics are stationary over the patch describes the
amplitude spectrum [27], [53].

An alternative to adaptive local filters such as local PCA
are predefined wavelet decompositions such as families of
Gabor filters. Gabor filters are obtained by modulating a 2D
sine wave with a Gaussian envelope. Such filters remove
most of the variability in images due to variation in lighting
and contrast, and closely model the response properties of
visual cortical cells [52], [36], [21], [20]. Representations
based on the outputs of families of Gabor filters at multiple
spatial scales, orientations, and spatial locations have
proven successful for recognizing facial identity in images
[39], [50]. In a direct comparison of face recognition
algorithms, Gabor filter representations gave better identity
recognition performance than representations based on
principal component analysis [65]. A Gabor representation
was also more effective than a representation based on the
geometric locations of facial features for expression recog-
nition [66].
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Fig. 8. Sample ICA basis images.



Section 6 explores local representations based on filters
that act on small spatial regions within the images. We
examined three variations on local filters that employ PCA
and compared them to the biologically inspired Gabor
wavelet decomposition.

A simple benchmark for the local filters consisted of a

single Gaussian kernel. The �-images were convolved with

a 15� 15 Gaussian kernel and the output was down-

sampled by a factor of 4. The dimensionality of the final

representation was n
4 . The output of this basic local filter

was classified at 70.3 percent accuracy using the Euclidean

distance similarity measure and template matching

classifier.

6.1 Local PCA

This approach is based on the local PCA representation that
was found to outperform global PCA for expression
recognition [48]. The shift-invariant local basis functions
employed in [48] were derived from the principal compo-
nents of small image patches from randomly sampled
locations in the face image. A set of more than 7,000 patches
of size 15� 15 was taken from random locations in the �-
images and decomposed using PCA. The first p principal
components were then used as convolution kernels to filter
the full images. The outputs were subsequently down-
sampled by a factor of 4 such that the final dimensionality
of the representation was isomorphic to Rp�n=4. The local
PCA filters obtained from the set of lower-face �-images are
shown in Fig. 9.

Performance improved by excluding the first principal
component. Best performance of 73.4 percent was obtained
with principal components 2-30, using Euclidean distance
and template matching. Unlike the findings in [48], shift
invariant basis functions obtained through local PCA were
no more effective than global PCA for facial action coding.
Performance of this local PCA technique was not signifi-
cantly higher than that obtained using a single 15� 15
Gaussian kernel.

Because the local PCA implementation differed from
global PCA in two properties, spatial locality and image
alignment, we repeated the local PCA analysis at fixed

spatial locations. PCA of location-independent images

captures amplitude information without phase, whereas

alignment of the images provides implicit phase informa-

tion [27], [10]. Local PCA at fixed image locations is related

to the eigenfeatures representation addressed in [48]. The

eigenfeature representation in [48] differed from shift-

invariant local PCA in image patch size. Here, we compare

shift-invariant and shift-variant versions of local PCA while

controlling for patch size.
The images were divided into m� n

4 15� 15 fixed

regions. The principal components of each region were

calculated separately. Each image was thus represented by

p�m coefficients. The final representation consisted of p �
10 principal components of m � 48 image regions.

Classification performance was tested using up to the

first 30 components of each patch. Best performance of 78.3

percent was obtained with the first 10 principal components

of each image patch, using Euclidean distance and the

nearest neighbor classifier. There is a trend for phase

alignment to improve classification performance using local

PCA, but the difference is not statistically significant.

Contrary to the findings in [48], neither local PCA

representation outperformed the global PCA representa-

tion. It has been proposed that local representations reduce

sensitivity to identity-specific aspects of the face image [48],

[30]. The success of global PCA here could be attributable to

the use of �-images, which reduced variance related to

identity specific aspects of the face image. Another reason

for the difference in findings could be the method of

downsampling. Padgett and Cottrell selected filter outputs

from seven image locations at the eyes and mouth, whereas

here, downsampling was performed in a grid-wise fashion

from 48 image locations.

6.2 Gabor Wavelet Representation

Here, we examine predefined local filters based on the

Gabor wavelet decomposition. This representation was

based on the methods described in [39]. Given an image

I�~x� (where ~x � �x; y�), the transform J i is defined as a

convolution
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Fig. 9. (a) Shift-invariant local PCA kernels. First nine components, order left to right, top to bottom. (b) Shift-variant local PCA kernels. The first

principal component is shown for each image location.



J i �
Z
I�~x� i�~xÿ~x 0�d 2~x 0 �16�

with a family of Gabor kernels  i

 i�~x� � k
~kik2

�2
eÿ

k~kik2k~xk2
2�2 ej

~ki~x ÿ eÿ �2

2

h i
: �17�

Each  i is a plane wave characterized by the vector ~ki
enveloped by a Gaussian function, where the parameter � �
2� determines the ratio of window width to wavelength.
The first term in the square brackets determines the
oscillatory part of the kernel and the second term
compensates for the DC value of the kernel [39]. The vector
~ki is defined as

~ki � f� cos'�
f� sin'�

� �
; �18�

where

f� � 2ÿ
��2

2 �; and '� � ��
8
:

The parameters � and � define the frequency and orienta-
tion of the kernels. We used five frequencies, �� � 0ÿ 4�,
and eight orientations, �� � 1ÿ 8�, in the final representa-
tion, following the methods in [39]. Example filters are
shown in Fig. 10. The Gabor filters were applied to the �-
images. The outputs fJ ig of the 40 Gabor filters were
downsampled by a factor q to reduce the dimensionality to
40� n

q and normalized to unit length, which performed a
divisive contrast normalization. We tested the performance
of the system using q � 1; 4; 16 and found that q � 16
yielded the best generalization rate. Best performance was
obtained with the cosine similarity measure and nearest
neighbor classifier.

Classification performance with the Gabor filter repre-
sentation was 95.5 percent. This performance was signifi-
cantly higher than all other approaches in the comparison
except independent component analysis, with which it tied.
This finding is supported by Zhang et al. [65], who found
that face recognition with the Gabor filter representation
was superior to that with a holistic principal component-
based representation. To determine which frequency ranges
contained more information for action classification, we
repeated the tests using subsets of high frequencies

(� � 0; 1; 2) and low frequencies, (� � 2; 3; 4). Performance

with the high frequency subset was 92.8 percent, almost the

same as for � � 0; ; 4, whereas performance with the low

frequency subset was 83.8 percent. The finding that the

higher spatial frequency bands of the Gabor filter repre-

sentation contain more information than the lower fre-

quency bands is consistent with our analysis of optic flow,

above, in which reduction of the spatial resolution of the

optic flow through smoothing had a detrimental effect on

classification performance. It appears that high spatial

frequencies are important for this task.

6.3 PCA Jets

We next investigated whether the multiscale property of

the Gabor wavelet representation accounts for the differ-

ence in performance obtained using the Gabor representa-

tion and the local PCA representation. To test this

hypothesis, we developed a multiscale version of the local

PCA representation, PCA jets. The principal components of

random subimage patches provide the amplitude spectrum

of local image regions. A multiscale local PCA representa-

tion was obtained by performing PCA on random image

patches at five different scales chosen to match the sizes of

the Gaussian envelopes (see Fig. 10). Patch sizes were

chosen as �3�, yielding the following set: [9� 9, 15� 15,

23� 23, 35� 35, and 49� 49]. The number of filters was

matched to the Gabor representation by retaining 16

principal components at each scale, for a total of 80 filters.

The downsampling factor q � 16 was also chosen to match

the Gabor representation.
As for the Gabor representation, performance was tested

using the cosine similarity measure and nearest neighbor

classifier. Best results were obtained using eigenvectors 2 to

17 for each patch size. Performance was 64.9 percent for all

five scales, 72.1 percent for the three smaller scales, and

62.2 percent for the three larger scales. The multiscale

principal component analysis (PCA jets) did not improve

performance over the single scale local PCA. It appears that

the multiscale property of the Gabor representation does

not account for the improvement in performance obtained

with this representation over local representations based on

principal component analysis.
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Fig. 10. (a) Original �-image. (b) Gabor kernels (low and high frequency) with the magnitude of the filtered image to the right. (c) Local PCA kernels

(large and small scale) with the corresponding filtered image.



7 HUMAN SUBJECTS

The performance of human subjects provided benchmarks
for the performances of the automated systems. Most other

computer vision systems test performance on prototypical

expressions of emotion, which naive human subjects can
classify with over 90 percent agreement (e.g., [45]). Facial

action coding is a more detailed analysis of facial behavior
than discriminating prototypical expressions. The ability of

naive human subjects to classify the facial action images in
this set gives a simple indication of the difficulty of the

visual classification task and provides a basis for comparing
the results presented here with other systems in the

literature. Since the long-term goal of this project is to

replace human expert coders with an automated system, a
second benchmark was provided by the agreement rates of

expert human coders on these images. This benchmark
indicated the extent to which the automated systems

attained the goal of reaching the consistency levels of the
expert coders.

Naive subjects. Naive subjects were 10 adult volunteers
with no prior knowledge of facial expression measurement.

The upper and lower face actions were tested separately.
Subjects were provided with a guide sheet which contained

an example image of each of the six upper or lower face
actions along with a written description of each action and a

list of image cues for detecting and discriminating the
actions from [23]. Each subject was given a training session

in which the facial actions were described and demon-

strated and the image cues listed on the guide sheet were
reviewed and indicated on the example images. The

subjects kept the guide sheet as a reference during the task.
Face images were preprocessed identically to how they

had been for the automated systems, as described in

Section 3, and printed using a high resolution HP Laserjet
4si printer with 600 dpi. Face images were presented in

pairs, with a neutral expression image and the test image

presented side by side. Subjects were instructed to compare
the test image with the neutral image and decide which of

the actions the subject had performed in the test image.
Ninety-three image pairs were presented in both the upper

and lower face tasks. Subjects were instructed to take as
much time as they needed to perform the task, which

ranged from 30 minutes to one hour. Naive subjects
classified these images at 77.9 percent correct. Presenting

uncropped face images did not improve performance.
Expert coders. Expert subjects were four certified FACS

coders. The task was identical to the naive subject task with
the following exceptions: Expert subjects were not given a

guide sheet or additional training and the complete face
was visible, as it would normally be during FACS scoring.

Although the complete action was visible in the cropped
images, the experts were experienced with full face images

and the cropping may bias their performance by removing

contextual information. One hundred and fourteen upper-
face image pairs and 93 lower-face image pairs were

presented. Time to complete the task ranged from 20 min-
utes to 1 hour and 15 minutes. The rate of agreement of the

expert coders with the assigned labels was 94.1 percent.

8 DISCUSSION

We have compared a number of different image analysis
methods on a difficult classification problem, the classifica-
tion of facial actions. Several approaches to facial expression
analysis have been presented in the literature, but until
now, there has been little direct comparison of these
methods on a single dataset. These approaches include
analysis of facial motion [44], [64], [54], [26], holistic spatial
pattern analysis using techniques based on principal
component analysis [17], [48], [40], and measurements of
the shapes and facial features and their spatial arrange-
ments [40], [66]. This investigation compared facial action
classification using optic flow, holistic spatial analysis, and
local spatial representations. We also included in our
comparison a number of representations that had been
developed for facial identity recognition and applied them
for the first time to facial expression analysis. These
representations included Gabor filters [39], Linear Discri-
minant Analysis [8], Local Feature Analysis [49], and
Independent Component Analysis [4].

Best performances were obtained with the local Gabor
filter representation and the Independent Component
representation, which both achieved 96 percent correct
classification. The performance of these two methods
equaled the agreement level of expert human subjects on
these images. Image representations derived from the
second-order statistics of the dataset (PCA and LFA)
performed about as well as naive human subjects on this
image classification task, in the 80 percent accuracy range.
Performances using LFA and FLD did not significantly
differ from PCA nor did spatially local implementations of
PCA. Correlation-based optic flow performed at a level
between naive and expert human subjects, at 86 percent.
Classification accuracies obtained here compared favorably
with other systems developed for emotion classification,
despite the additional challenges of classifying facial actions
over classifying prototypical expressions reviewed in [31].

We obtained converging evidence that local spatial filters
are important for analysis of facial expressions. The two
representations that significantly outperformed the others,
the Gabor representation [39] and the Independent Com-
ponent representation [4], were based on local filters. ICA
was classified as a holistic algorithm since the analysis was
performed over the images as a whole. The basis images
that the algorithm produced, however, were local. Our
results also demonstrated that spatial locality of the image
filters alone is insufficient for good classification. Local
principal component representations such as LFA and local
PCA performed no better than the global PCA representa-
tion (eigenfaces).

We also obtained multiple sources of evidence that high
spatial frequencies are important for classifying facial
actions. Spatial smoothing of optic flow degraded perfor-
mance by more than 30 percent. Second, classification with
only the high frequencies of the Gabor representation was
superior to classification using only the low spatial
frequencies. A similar result was obtained with the PCA
jets. These findings are in contrast to a recent report that the
information for recognizing prototypical facial expressions
was carried predominantly by the low spatial frequencies
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[66]. This difference in findings highlights the difference in
the task requirements of classifying facial actions versus
classifying prototypical expressions of emotion. Classifying
facial actions is a more detailed level of analysis. Our
findings predict, for example, that high spatial frequencies
would carry important information for discriminating
genuine expressions of happiness from posed ones, which
differ in the presence of AU 6 (the cheek raiser) [24].

The relevance of high spatial frequencies has implica-
tions for motion-based facial expression analysis. Since
optic flow is a noisy measure, many flow-based expression
analysis systems employ regularization procedures such as
smoothing and quantizing to estimate a principal direction
of motion within an image region. The analysis presented
here suggests that high spatial resolution optic flow is
important for analysis of facial behavior at the level of facial
action coding.

In addition to spatial locality, the ICA representation and
the Gabor filter representation share the property of
redundancy reduction and have relationships to represen-
tations in the visual cortex. The response properties of
primary visual cortical cells are closely modeled by a bank
of Gabor filters [52], [36], [21], [20]. Relationships have been
demonstrated between Gabor filters and independent
component analysis. Bell and Sejnowski [10] found, using
ICA, that the filters that produced independent outputs
from natural scenes were spatially local, oriented edge
filters, similar to a bank of Gabor filters. It has also been
shown that Gabor filter outputs of natural images are at
least pairwise independent [57]. This holds when the
responses undergo divisive normalization, which neuro-
physiologists have proposed takes place in the visual cortex
[33]. The length normalization in our Gabor representation
is a form of divisive normalization.

The Gabor wavelets, PCA, and ICA each provide a way
to represent face images as a linear superposition of basis
functions. Gabor wavelets employ a set of predefined basis
functions, whereas PCA and ICA learn basis functions that
are adapted to the data ensemble. PCA models the data as a
multivariate Gaussian and the basis functions are restricted
to be orthogonal [41]. ICA allows the learning of non-
orthogonal bases and allows the data to be modeled with
non-Gaussian distributions [16]. As noted above, there are a
number of relationships between Gabor wavelets and the
basis functions obtained with ICA. The Gabor wavelets are
not specialized to the particular data ensemble, but would
be advantageous when the amount of data is too small to
estimate filters.

The ICA representation performed as well as the Gabor
representation, despite having two orders of magnitude
fewer basis functions. A large number of basis functions
does not appear to confer an advantage for classification.
The PCA-jet representation, which was matched to the
Gabor representation for number of basis functions as well
as scale, performed at only 72 percent correct.

Each of the local representations underwent down-
sampling. The effect of downsampling on generalization
rate was examined in the Gabor representation and we
found downsampling improved generalization perfor-
mance. The downsampling was done in a grid-wise fashion

and there was no manual selection of facial features.
Comparison to representations based on individual facial
features (or fiducial points) has been addressed in recent
work by Zhang [66] which showed that multiresolution
Gabor wavelet coefficients give better information than the
geometric positions of fiducial points for facial expression
recognition.

9 CONCLUSIONS

The results of this comparison provided converging
evidence for the importance of using local filters, high
spatial frequencies, and statistical independence for classi-
fying facial actions. Best performances were obtained with
Gabor wavelet decomposition and independent component
analysis. These two representations are related to each
other. They employ graylevel texture filters that share
properties of spatial locality, independence, and have
relationships to the response properties of visual cortical
neurons.

The majority of the approaches to facial expression
recognition by computer have focused exclusively on
analysis of facial motion. Motion is an important aspect of
facial expressions, but not the only cue. Although
experiments with point-light displays have shown that
human subjects can recognize facial expressions from
motion signals alone [7], recognition rates are just above
chance and substantially lower than those reported for
recognizing a similar set of expressions from static
graylevel images (e.g., [45]). In this comparison, best
performances were obtained with representations based
on surface graylevels. A future direction of this work is to
combine the motion information with spatial texture
information. Perhaps combining motion and graylevel
information will ultimately provide the best facial expres-
sion recognition performance, as it does for the human
visual system [7], [63].
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